
CFG
Input file: standard input
Output file: standard output
Time limit: 0.5 seconds
Memory limit: 128 megabytes

Consider a function F , which takes in a string and outputs a string, having the following properties:

• For every string x, |x| < |F (x)|.

• For every strings x and y, F (xy) = F (x)F (y), where xy is x concatenated with y.

We will also construct a set of strings, L, in the following manner:

• B is in L.

• If x is in L then F (x) is also in L.

• If x and y are both in L then xy is also in L.

You are given a string B and a list, A, of N strings. Knowing that B is in L, determine for each string
from A if it belongs to L or not.

You will have to write a function with the following header:

The function should return a string, where the i− th character is ’1’ if the i− th string from A belongs
to L and ’0’ otherwise.

Note that you only have to implement the check function, but you can also implement additional helping
functions and / or structures or classes.

Please refer to the sample implementation (sample.cpp).

Input
The check function gets the following three arguments (in this particular order):

• The F function.

• The string B.

• The array of strings A.

All the strings will only contain lowercase English alphabet letters.

For tests worth 10 points: the length of the longest string from A ≤ 10.

For tests worth 30 more points: the length of the longest string from A ≤ 1000.

For tests worth 10 more points: B only contains ’a’s and F only returns strings containing ’a’s.

For tests worth 50 more points: |B| ≤ 105, the length of the longest string from A ≤ 105.

For every testcase, A contains at most 20 strings.

Output
The check function returns a string of length equal to the length of A, where the i− th character is ′1′ or
′0′ depending on whether or not the string A[i] is in L.

Page 1 of 2

Note
Given its special type, this problem doesn’t have a formal sample test case with a sample output. Here
we present and explain the sample test.

Let’s consider B = ab and F (B) = abbac. Then:

• ab is in L.

• abab is in L.

• abbac is in L.

• ababbac is in L.

• abbc is not in L.

• abb is not in L.

• cd is not in L.

• ...

Page 2 of 2

