[10T2024 — Final Round Editorial (===

Piatra Neamt, February 29th, 2024 standings e EN

Final Standings (standings)

Author: Stefan Dascalescu

Developer: Stefan Dascalescu

Solution

This problem is meant to be an implementation exercise. In short, we will need to be careful about
handling the input data, as we will need to store for each problem and each team the amount of penalties
they have taken, as well as whether they solved the problem or not. Basically, we need to be a bit careful
about storing these pieces of information, while also making sure to avoid overcounting the number of
solved problems, as a team can potentially submit multiple solutions for the same problem.

Then in the end, all we need to do is to sort the data as well as applying all the tiebreakers mentioned
in the problem statement. Handling all of these things will ensure a linear solution with respect to @,
while also taking in consideration the complexity required to sort the N participating teams, which can
be O(nlogn) or O(n?).

standings Author: Stefan Dascalescu Page 1 of B

[10T2024 — Final Round Editorial (===

Piatra Neamt, February 29th, 2024 CTTM e EN

From Constanta to Timisoara (CTTM)

Author: Bogdan-loan Popa, Vlad-Mihai Bogdan
Developer: Bogdan-loan Popa, Vlad-Mihai Bogdan

Solution

Let d(a,b) = the minimum distance to reach node b starting from node a. For a fixed pair (a,b) the
minimum distance of a path from a to b which passes through nodes (X,Y) will be min(d(a, X) +
d(X,Y)+d(Y,b),d(a,Y) +d(Y,X)+ d(X,b)).

We’ll calculate dz, = the minimum distance from node X to node a and dy, = the minimum distance
from node Y to node a using Dijkstra’s algorithm. We’ll sort the nodes in increasing order with respect
to the value dy, — dx,. Now we will iterate through the nodes. With a fixed node a we want to know how
much it contributes to the total sum. a will go through x when pairing it with a node b which appears
earlier in the sorting, and it will go through y when pairing it with a node b which appears later in the
sorting. The time complexity of the solution is O((M + N)log(N))

CTTM Author: Bogdan-loan Popa, Vlad-Mihai Bogdan Page 2 of B

[10T2024 — Final Round Editorial (===

Piatra Neamt, February 29th, 2024 cntcrit e EN

Count Critical Edges (cntcrit)

Author: Bogdan-Ioan Popa
Developer: Vlad-Mihai Bogdan, Bogdan-loan Popa

Solution

Every edge will contribute to the total sum an equal number of times. So we will focus on counting how
many times does edge (1,2) appear as a critical edge. If edge (1,2) is critical, it means that if removing
it node 1 and 2 will be in two different connected components. So we will iterate through the size of
the connected component of 1, count how many connected graphs are there with the given size, and the
rest of the graph can be anything. So now the problem reduces to counting how many labeled connected
graphs with NV nodes exist.

Let dpy = the number of labeled connected graphs with N nodes.

™ N~ N -1\ v
dpn = 2\2 _dej+1' i <20 2
§=0

The j in the recurrence iterates through the size of the connected component of node 1.

cnterit Author: Bogdan-loan Popa Page 3 of B

[10T2024 — Final Round Editorial (==

Piatra Neamt, February 29th, 2024 chalkboard e EN

Chalk Board (chalkboard)

Author: Ovidiu Rata

Developer: Stefan Dascalescu

Solution

The Fundamental theorem of arithmetic, that states that a number x = p1% X p2® X - -+ X p,%*, where
P1,P2,...,pn are prime factors and aq,as,...,a, their powers then the number of divisors is equal to
(a1 +1) x (ag+1) x -+ x (an + 1).

In order to solve the problem, we can first precompute the prime factorization of the integers from 1 to
109 either by running a sieve at the beginning, or doing trial division for each of the ¢ numbers, that is
for the numbers we get for the operations of types 1 and 2.

Regardless of the way we use for handling the prime factorizations for the first two types of queries, we
can use a segment tree which handles point updates on one of the values from 2 to 10, as well as queries
which compute the number of possible integers we can obtain using primes within a certain range. The
most important thing is that for a prime number p, if the prime factorization of the number written on
the chalk board contains x¥, where y is the exponent of the prime factorization of x, we can create y + 1
such numbers. Then, for two or multiple prime factors, we can multiply these answers and we will use
this in the logic of computing the products on the segment tree, while making sure to avoid overflows
and other such issues.

The final complexity of the algorithm will be O(q - ma - logV ALM AX), where max is the highest number
of distinct prime factors a value has, and VALM AX is the upper bound for the values of the input,
which is 106.

chalkboard Author: Ovidiu Rata Page 4 of B

[10T2024 — Final Round Editorial

Piatra Neamt, February 29th, 2024 connected e EN

Connected (connected)

Author: Alexandru Lorintz

Developer: Alexandru Lorintz

Solution

For the first subtask, a O(N?) solution where a range from the permutation is fixed (this step has
time complexity O(N?)) and a traversal algorithm is used to check the connectivity (this step has time
complexity O(N)) is enough to solve it.

In order to optimize the previous solution, one can make use of a Disjoint Sets Union data structure
in order to update the connectivity state of a range when it is extended, improving the time complexity
to O(N? % a(N)), which is enough to solve the second subtask.

In order to solve the full problem we need to make some observations regarding the problem. The first
and most important one I would say is that a connected region from a given tree will also always be a
tree by itself, so a way of characterising its structure is using the mathematical relationship between the
number of nodes and edges of a tree, i.e. V = E + 1, where V represents the number of nodes and E the
number of edges. Furthermore, I will say that any set of nodes from a tree for which this equality holds
(the edges considered will be the edges that have both ends in nodes from the given set) is a connected
region of that tree, as it is easy to visualize that if the set of nodes form a forrest of trees, the difference
V — F is always greater than 1.

Having the previous observations in mind, we can actually describe a continuous subsequence of nodes
from the permutation by the difference V — E, which must be 1 in order for that subsequence to be a
connected region and will be greater than 1 otherwise.

Let’s consider a data structure where information for all the continuous subsequences that end in some
index is kept. Formally, if the current ending index is R and our data structure is DS, we will consider
DS[L] = V[L] — E[L] for all values L < R, where V[L] is the number of nodes from the range [L, R]
(which is just R — L + 1) and E[L] is the number of edges induced by these nodes.

In order to find out how many subsequence that end in R are connected, we need to count the number
of values L such that DS[L] = 1 (as stated above). After that, R needs to be gradually increased
(R = R+ 1) until we reach the end of the permutation and at each step perform the desired query (we
obviously start with R = 1). This means that the data structure must be updated for the new ranges.

Each update will be split into observing how changes are made to V[L] and E[L]. The update for V[L]
is quite standard, as the only thing that happens is the appearence of a new node (corresponding to the
index R+ 1), so all values DS[L] with L < R are increased by 1 and DS[R + 1] is set to 1.

For updates regarding values F[L], new edges having an endpoint in the node with index R + 1 must be
considered. If there is a new edge having one endpoint in the node with index R 4+ 1 and the other in a
node with index L < R, this edge updates the state of the current relevant values from the data structure
for all the subsequences [P, R 4+ 1] with P < L, so all values DS[P] need to be decreased by 1 (because
edges contribute to DS with negative value).

Now that the details of what the data structure should be capable of are mentioned, it should be clear
that a suitable candidate for the job would be a segment tree that supports lazy update for increasing
all values from a range with some given value and query for computing the minimum value from a range
and its frequency (as it was mentioned earlier that V' — E > 1, so if 1 appears on a range it will also be
the minimum and we are only interested in this).

connected Author: Alexandru Lorintz Page 5 of B

With all of this said, the time complexity for solving the whole problem becomes O(N xlogN) with O(N)
space complexity.

connected Author: Alexandru Lorintz Page 6 of B

[10T2024 — Final Round Editorial (===

Piatra Neamt, February 29th, 2024 mermaid e EN

Mermaid of the Waters (mermaid)

Author: Vlad-Mihai Bogdan
Developer: Vlad-Mihai Bogdan

Solution

For a given binary string S, we can use a stack to check if the string can become empty using the
operation. The greedy solution would just be to erase the i*" character of the string if the character on
top of the stack is the same as S;.

If we look at the stack (at any point of time), we can see that the it’s values alternate (we either have
010101 ... or 101010...). So, this could lead us to an O(N?) dynamic programming solution, where we
keep the size of the stack and the first character inserted in it.

For the O(N) solution, we can make a bijection between the binary strings of length N where the number
of 0’s is equal to the number of 1’s and the binary strings of length N satisfying the condition stated in
the statement.

Another solution could use the fact that the recurrence of the O(N?) solution builds Pascal’s Triangle
and one can see the fact that the answer will always be (N]\/[2)'

mermaid Author: Vlad-Mihai Bogdan Page 7 of B

[10T2024 — Final Round Editorial (===

Piatra Neamt, February 29th, 2024 xyqueries e EN

XY Queries (xyqueries)

Author: Bogdan-Ioan Popa
Developer: Bogdan-Ioan Popa

Solution

Let F(z,y) be the number of pairs (I,7) where 2 < min(l,r) and maz(l,r) < y. Then the answer for a
query (X;, Y;) will be FI(X;,Y;) — F(X;+1,Y;) — F(X;,Y; — 1)+ F(X; + 1,Y; — 1). So we will transform
each query into 4 queries of the F' function. For solving these queries we will use MQO’s algorithm but
we have to keep the frequencies of the values in mind. We will sort the pairs (A;,4) in lexicographic
order. Now a query of the F' function will be a range query in the sorted array of pairs. For a query we
will ’activate’ the positions of the values and we will count the number of subarrays which have all the
elements activated. To do this efficiently we will have to solve these queries only by activating positions.
So the queries of length less than sqrt(NN) will be solved by brute force. Now the queries of length greater
than sqrt(N) can be solved only by activating positions (The = and y values will be in different buckets)
using MO’s algorithm with undo operations (for a query we will have to undo the activations that have
been made from x to the end of its bucket). The total complexity of the solution is ((N + Q) x sqrt(N))

xyqueries Author: Bogdan-loan Popa Page 8 of B

	Final Standings (standings)
	From Constanta to Timisoara (CTTM)
	Count Critical Edges (cntcrit)
	Chalk Board (chalkboard)
	Connected (connected)
	Mermaid of the Waters (mermaid)
	XYQueries (xyqueries)

