
The problem: Gas Stations  

                    Author: Adrian Panaete 

Description of the solution  

We notice that a new gas station will be built in the middle of 

the longest sequence situated between two consecutive gas stations 

(the house in the middle, if the sequence contains an odd number 

of houses or the first of the two in the middle if the sequence 

contains an even number of houses. 

To obtain an algorithm in logarithmic time, all the sequences which 

have, at a certain moment, the maximum length must be processed 

simultaneously. 

We notice that for the construction of any gas station on a 

sequence of maximum length, the value S will diminish with the 

same value, so the successive sequence of values S obtained during 

the process of construction of the gas stations on the sequences 

with that length will form an arithmetic progression. 

It is enough for us to know how many gas stations of each type 

there are at a certain moment and how many stations of each type 

there are after all the gas stations have been built on the 

sequences with the maximum length.  

By using this procedure each time we start to build a new set of 

gas stations, there will be sequences of at most 3 different 

lengths. 

For example, if initially we have N = 57, in time we will obtain 

the following evolution: 

1. One sequence of length 57 transforms in two sequences of length 

28 

2. The two sequences of length 28 transform in two sequences of 

length 14 and two of length 13 

3. The two sequences of length 14 transform in two sequences of 

length 7 and in two of length 6 => we have two of length 13, two 

of 7 and two of 6 

4. The two sequences of length 13 transform in 4 of length 6 => we 

have two of 7 and 6 of 6 

5. The two of 7 transform in 4 of 3 => we have 6 of 6, 4 of 3 

6. The 6 of 6 transform in 6 of 3 and 6 of 2 => we have 10 of 3, 

6 of 2 

7. The 10 of 3 transform in 20 of 1 => we have 6 of 2 and 20 of 1 

8. The 6 of 2 transform in 6 of 1 => we have 26 of 1 

9. The 26 gas stations are built and the whole process is over. 

 

 

 

 

 



The problem: Tommy's Toy    

Authors Cristina Sichim and Adrian Panaete 

Description of the solution  

We double the sequence and if A<B then we replace A by A+M and we 

do exactly the same without minding the fact that we have got out 

of the interval of markings 0 , M-1. 

At the end, we are careful to add to each marking i < M the value 

from i+M.  

And we have the answer!  

So, we have three stages 

Stage 1: at the reading we add 1 and -1 at 4 positions between 0 

and 2M-1 (the ones which exceed M-1 are caused by the passage of 

A in A+M) 

Stage 2. We sum partially twice the sequence from 0 to 2M-1 

Stage 3. We collect the solution [ i + M ] to the solution [ i ] 

with i from 0 to M-1 

The stage 1 has the complexity O(N) and the stages 2 and 3 have 

complexities O(M) 

The final complexity O(N+M) !!!!! 

 

The problem: Options  

Author: prof. Marius Nicoli, the Național College "Frații 

Buzești", Craiova 

Description of the solution  

A first solution is to calculate the value D[i][j] = the minimum 

number of steps for reaching the position i,j. The recurrence is 

D[i][j] = D[i-1][j-1] + D[i-1][j-1] + D[i+1][j-1]. The restriction 

for the number of columns does not allow this solution to work in 

the required time (as memory, only the last 2 columns can be used, 

so there are two vectors). Having the periodical matrix with L 

rows and K columns, we will have the following pre-calculation: 

D[p][i][j] = the minimum number of steps for joining 2p matrices 

and for starting from the row i and column 1 of the first one of 

the p matrices, and for reaching the row j and column k of the 

last one. For calculating the values D[p][j][j] we use the values 

D[p-1][i][] and D[p-1][][j], thinking that from the last column of 

D[p-1][i][] we pass on the first one of D[p-1][][j]. 

Once calculated the values D, we will first determine M as being 

the biggest multiple of K smaller than or equal to C and we use 

the values D[bit][][], where bit represents positions of a bit of 

1 in the writing of M in the basis 2. For the area formed of the 



columns from M+1 to C, we can write the dynamics of the first 

solution. 

 

The problem: KST    

Author: Razvan Turturica 

Description of the solution  

Solution: Adrian Panaete – complexity O( N^2 * logK ) 100p 

 

We note d[n][k] = the number of variants in which, having an 

interval of n consecutive values, we place k of these in the root 

of a tree and the rest n-k in the sub-trees determined by the k+2 

sub-trees KST determined by the fixed values fixate. 

OBSERVATIONS:  

1. The solution of the problem is d[N][K] where N and K are the 

read values. 

2. If n>K and k=0 it means, in fact, that they are in a sub-tree 

that we have just begun to build. The first thing that I have to 

do is to put K of the n values in the root of the sub-tree. Then, 

d[n][0]=d[n][K]  

3. If n<k we have too few values to complete the k values which 

are still necessary in the root, so we will take d[n][k] = 0; 

4. If n<K and n=k then we will use all the n values for completing 

the root, so we will take d[n][k]=1 

5. If n<K and k=0 then it means that we have just begun to build 

a new sub-tree KST with fewer than K nodes, so we cannot build 

more than a leaf, so we will take d[n][k]=1 

The observations treat all the particular cases in which we can 

say directly how much d[n][k] is.The case that remains is the one 

in which n>k and k>0. 

We consider two sub-cases: 

1. The sub-case k = odd 

We fix one of the n values as the middle value between the k 

values that must be placed in the root. There will remain i smaller 

values and j larger values than the chosen one and i+j=n-1.  We 

must choose k/2 values out of the first i for the root and k/2 

values out of the last j for the root. We obtain 

d[n][k] = the sum for i+j=n-1 from d[i][k/2]*d[j][k/2] 

 



 

2. The sub-case k = even 

We will fix one of the n values as being the smallest of the 

k values that we put in the root. There remain i smaller values 

out of which we do not need to put any one in the root and j larger 

values out of which we must put k-1 in the root. We obtain 

d[n][k] = the sum for i+j=n-1 from d[i][0]*d[i][k-1] 

For every fixed k and n the dynamics has the complexity O(n). But 

n takes all the values from 1 to N, thus another O(N). From an odd 

k we pass to k/2 and for an even k we pass to k-1 which is odd, 

therefore we will pass to (k-1)/2. It follows that the number of 

the values k that we pass through is O(log K ). 

The final complexity will be O( N * N * log K ). 

The dynamics works well with memoization, which treats separately 

the particular cases of n and k and appeals to the necessary values 

for the general case in dynamics. 

The necessary memory would be O( N log K ) but for simplifying the 

implementation, we can declare the matrix of dynamics 

d[1001][1001] from which we will use N rows and log K columns.  

 

Solution O(N*N*K): In the same way as in the previous solution 

except for the fact that the passing is made only from k to k-1. 

 

The problem: map                           

 Author: Szabó Zoltan 

Description of the solution  

The 40-points solution 

We use the backtracking technique, trying all the painting options 

and making sure that two neighbouring countries do not have the 

same colour.   

The 100-points solution 

We consider the graph associated to the map, in which the vertices 

represent countries. There is an edge between two countries if 

they are neighbours. The maximum degree of a vertex in this graph 

cannot be higher than 8.  

We notice that a vertex with a degree which is smaller than 4 can 

always be painted irrespective of the colours of its neighbours. 

Consequently, we will use the following algorithm. All the vertices 



with a degree below 4 are introduced into a waiting stack and will 

be deleted from the graph. Thus, the degrees of other vertices 

will lower and new vertices will appear with a degree below 4, 

which we will introduce into the stack in the order of their 

appearance. This procedure, applied repeatedly, will eliminate all 

the vertices of the graph.  

Finally, the vertices introduced in the stack will be pained in a 

colour that has not existed till that moment among the colours of 

the neighbours. This method resembles a topological sorting.   

The complexity of the algorithm is O(m*n). 

 

The problem: UpDown                            

Author: Szabó Zoltan 

Description of the solution  

For finding the maximal ordered sequence after the first component 

and decreasingly ordered after the second component, we will sort 

the sequence in an increasing order after the first component then 

we will use the algorithm for generating the longest decreasing 

sub-sequence, after the second component. The sorting can be made 

with cu complexities O(n) or O(nlogn), the longest increasing sub-

sequence is obtained with the complexity O(n logn) or O(n^2). In 

conclusion, the complexity of the solution is O(n^2) for 75 points 

and O(nlogn) for 100 points. 

 

The problem: flowers                 

    Author, Gh. Manolache, CNI P. Neamt 

 

Description of the solution 

 

We make 2 DFS for each of the letters of the alphabet. First of 

all, we will calculate the minimal cost for each sub-tree of the 

tree, so that if a node is included, all its descendants are 

included. Secondly, using the values in the first DFS, we will 

calculate the minimal cost, by taking into consideration each of 

the nodes as a location which we will bring together. Formally, 

when we calculate the value for a node x, we will have to take 

into account the calculated values for each node which is not a 

descendant of the node x and, also the sum of the quantities. 

 In conclusion, the minimal solution for a node x is the sum of 

the solution for each node which is not a descendant of the node 

x + the value of dp [x]. 

 


